CO₂ Storage Methods

BattelleNeeraj Gupta and Joel R. Sminchak

Possible site Probable site Proven site

High

Uncertainty

Data acquisition

Detailed characterization

Construction includes inne polari construction

I Uncertainty

Detailed characterization

Design

Design

Model driven Monitoring plan

Frediction

Prediction

Long term
Environmental monitoring

Performance & Risk

(Functions) Capacity, Injectivity, Containment >>>> (Stakes) HSE, Cost, Image

Maryland Energy Administration Carbon Sequestration Workshop November 19-20, 2019 Maritime Institute, Linthicum, Maryland

Outline

- 1. CCS Overview/Value Chain
- 2. Site Selection/Screening
- 3. Developing CCS projects
- 4. Storage Resources
- 5. Reservoir Modeling
- 6. Public Outreach
- 7. Terrestrial/CO₂ Utilization

Candidate Geologic CO₂ Storage Formations

Multiple Options for CO₂ Storage

Terrestrial Sequestration

 Terrestrial sequestration options for restored wetlands, reclaimed minelands, forested wetlands in Maryland.

Restored tidal marshes at Blackwater National Wildlife Refuge, Maryland.

Components of CCUS Value Chain

Enterprise Strategic Planning

- Carbon foot print analysis
- Source reduction analysis
- · Asset opportunity screening

Capture

- · Development of new capture concepts
- Applications screening
- · Process optimization and integration

Surface Transport

- Analysis of CO₂ transport properties
- · Process optimization and integration
- System design support
 - · Compression and processing
 - Pipeline transport
- Monitoring (inspection, corrosion analysis etc.)

Subsurface and Injection

- Site characterization
- Permitting and Environmental
- · Well field design and implementation
- Injection operations and monitoring

Measurement Mitigation and Verification

- · Design, implementation and operation
- Data analysis

Storing CO₂

What Makes Good Reservoirs and Confining Layers?

Confining Layer

Medium Reservoir

Excellent Reservoir

- Permeability less than .01 mD
- Shale, carbonate mudstone, salt
- Permeability10-100 mD
- Sandstone
- Dolomite with intercrystalline porosity

- Permeability>100 mD
- Sandstone
- Dolomite with vug development and intercrystalline porosity

Site Selection-Well Characterized Deep Reservoirs Isolated from Freshwater Sources

- Saline reservoirs excellent for storage
 - Not competing with O&G fields
 - Isolated from freshwater sources
 - Deep enough to keep
 CO₂ at supercritical

Storing/Utilizing CO₂

Depleted Oil and Gas Fields/ EOR

- Depleted oil and gas fields are ideal candidates for storage
 - Proven to hold fluids
 - Efficient seals
- Enhanced oil recovery (EOR) adds utilization option
 - Better recovery of oil
 - Recycling of CO₂
 - Once oil is recovered, reservoir can be used for storage

Geologic CO₂ Storage

- Candidate CO₂ storage sites are screened for suitability of longterm storage using geologic and economic criteria
- Site selection and development for geologic storage typically evolve over multiple project stage considerations
- Site characterization a key step to establish baseline conditions and develop understanding of the storage reservoir dynamics
- Monitoring of the site during injection and post-injection to track reservoir response and validate system performance and conformance criteria

Developing CCS Projects

Site Selection Maturation over Project Stages

Source: DOE Best Practices for Site Screening, Site Selection, and Initial Characterization for Storage of CO₂ in Deep Geologic Formations

Flowchart for Site Screening

Source: DOE Best Practices for Site Screening, Site Selection, and Initial Characterization for Storage of CO₂ in Deep Geologic Formations

Flowchart for Site Selection

US EPA - 2 Prongs for Regulations

- Underground Injection Control (UIC) governs well permitting and injection operations
 - Class II Oil and Gas Operations (145,707 Recovery Wells as of FY 2016)
 - Class VI CO₂ Sequestration (7 CCS Wells as of FY 2016)
- GHG Reporting Program
 - Subpart RR for Geologic Sequestration of CO₂ (3 Approved Plans)
 - Subpart UU for Injection of CO₂ (86 Reporters)

Geologic Field Characterization Activities

- Geologic Assessment
 - Site specific assessment of target storage reservoirs and geologic setting
- Site Characterization and Design
 - Seismic surveys, test-well drilling, reservoir tests, brine sampling, other field work at the demo sites
 - Site data used to design injection and monitoring programs
- CO₂ Injection Tests and Monitoring
 - Finalize CO₂ source and delivery
 - CO₂ injection testing and monitoring
- Additional test wells may be needed in some cases

Developing CCS Projects

Site Screening Using Geological Setting-Sichuan Basin Example

Lithology

Seismic Setting

earthquake distribution in Sichuan Basin and the surrounding area

Oil and Gas Fields

Existing Deep Wells

Regional Structure and Faults

Source: China Geological Survey

Wellbore Integrity – CCUS in Oil/Gas Rich Regions

- Old wells seen as a risk for CO₂ storage
- Regional status of oil and gas wells, cement bond logs, field monitoring of sustained casing pressure, spatial analysis of wellbore integrity indicators, 6 test study areas
- Results provide better understanding of implications of wellbore integrity issues for CO₂ storage projects in the region

Low Seismic Hazard in Mid-Atlantic

 Seismicity risk reduced through siting, characterization, and operational controls

USGS National Seismic Hazard Mapping Project

Evaluating Geomechanical Risks for CO₂ Storage

- Realistic analysis of geomechanical risk factors related to CO₂ storage:
 - Which reservoir rock formations are more fractured in the region?
 - Which caprocks have larger risk factors related to fracturing?
 - What are the key methods and tools for evaluating fractured zones in deep layers?
 - How can we better understand basin-scale stress-strain regime to more accurately define stress magnitude at depth?

Estimating Storage Resources

Defining Storage Terminology and Classification Systems

CSLF, 2007, 2008

Figure 4. CSLF Techno-Economic Resource-Reserve pyramid (CSLF, 2007).

USDOE, 2008, 2010, 2011, 2012, 2015

CO2 geologic storage classification system.

CO ₂ Geological Storage			
_		Capacity	
Implementatio		Active Injection	
	lement		Approved for Development
		Justified for Development	
ition	Co	ntingent Storage Resources	
haracteriza	Dev	elopment Pending	
	Unc	Development clarified or On Hold	
Site (D	evelopment Not Viable	
no	Pro	spective Storage Resources	
orație		Qualified Site(s)	
xplc		Selected Areas	
	Pot	ential Sub-Regions	
ectiv	e Sto	orage Resources	
	Characterization Implementation	Exploration Site Characterization Implementation	

_ ;	Prospective Storage Resources		
uoii.	Project Sub-class	Evaluation Process	
	Qualified Site(s)	Initial Characterization	
	Selected Areas	Site Selection	
-	Potential Sub-Regions	Site Screening	

IEA GHG, 2008

Figure 5. Proposed CO₂ storage classification framework.

Regional Assessment In Eastern Ohio

Calculation of Prospective Stacked CO₂ Storage Resource

Reservoir Simulations Aspects

Example from Mountaineer Site

Reservoir Modeling - Model Evolution with Project Phases

Why is Monitoring Important?

- Accounting for injection
- Regulatory requirements
- Optimization
- Operational safety
- Leakage detection
- Map injected CO₂

Monitoring Technologies

Atmospheric Monitoring

- Optical sensors
- Atmospheric tracers
- Eddy covariance

Near-Surface Monitoring

- Geochemical monitoring in soil, vadose zone, and shallow groundwater
- Surface displacement
- Ecosystem stress

Subsurface-Monitoring

- Well logging tools
- Downhole monitoring tools
- Seismic
- Subsurface fluid sampling and tracer analysis
- Gravity
- Electrical techniques

MVA Data Integration and Analysis

- Intelligent monitoring networks
- Advanced data integration and analysis

Source: Best Practices for Monitoring, Verification, and Accounting of CO₂ Stored in Deep Geologic Formations

Developing a Monitoring Plan

Pre-Injection through Post CO₂ Injection

- Baseline monitoring to establish conditions pre-injection
- Active injection monitoring for operational safety, leakage detection, and plume transport
- Post injection monitoring to verify CO₂ plume location and leakage detection

Injection Operations and Monitoring

- Injectivity testing at a power plant in a pilot test
- At this site, very limited injection was possible due to low permeability

Developing clear communications about CCS critical towards increasing public acceptance

- Addressing public concerns about safety
- CCS' role in climate change mitigation
- Addressing specific concerns such as the protection of groundwater resources
- Key conclusions resulting from research and demonstrations

CCUS: An Important Option for Climate Change Mitigation

- Safe CO₂ storage sites can be selected using well-known techniques
- CO₂ can be injected and monitored using available techniques
- The behavior of injected CO₂ can be reliably predicted using modeling
- Risks are well understood and measures are taken to greatly reduce those risks
- Without CCUS the cost of addressing climate change is much higher

Moving Forward

- Storage options in Maryland?
- Key issues for CO₂ storage applications in Maryland.
- Pilot tests
- Source-sink matching.
- Feasibility, FEED studies.
- Policy support.

Questions?

